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This paper introduces a vision-based tactile sensor FingerVision, and explores its use-
fulness in tactile behaviors. FingerVision consists of a transparent elastic skin marked
with dots, and a camera, that is easy to fabricate, low cost, and physically robust. Unlike
other vision-based tactile sensors, the complete transparency of the FingerVision skin
provides multimodal sensation. The modalities sensed by FingerVision include distri-
butions of force and slip, and object information such as distance, location, pose, size,
shape, and texture. The slip detection is very sensitive since it is obtained by computer

vision directly applied to the output from the FingerVision camera. It provides high-
resolution slip detection, which does not depend on the contact force, i.e. it can sense
slip of a lightweight object that generates negligible contact force. The tactile behav-
iors explored in this paper include manipulations that utilize this feature. For example,
we demonstrate that grasp adaptation with FingerVision can grasp origami, and other
deformable and fragile objects such as vegetables, fruits, and raw eggs.

Keywords: FingerVision; tactile sensor; tactile behavior.

1. Introduction

We are exploring a vision-based tactile sensor FingerVision1. Unlike other vision-

based tactile sensors such as TacTip2 and GelSight3, FingerVision has a transparent

skin that enables an embedded camera to see through the skin. This feature increases

the modalities obtained by the sensor, including vision of nearby objects and slip

distribution. We explore if FingerVision is a promising approach to overcome the

issues of existing tactile sensors, and how we effectively use FingerVision in designing

robotic behaviors.

FingerVision consists of a transparent elastic material, a transparent hard layer,

and cameras. On the surface of the elastic material, small dots are placed to track

1
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the deformation of the material with computer vision. The conceptual diagram is

shown in Fig. 1. By processing the video data from the cameras of FingerVision, we

can obtain tactile sensation and vision of nearby objects (proximity vision). The

features of FingerVision can be summarized as follows:

(1) Multimodal: It can sense force distribution, high-resolution slip distribution,

object distance, location, pose, size, shape, texture, and other information ob-

tained from proximity vision.

(1.1) Slip can be detected regardless of the force on objects. It can sense slip-

page even when the object is too light to generate measurable force (e.g.

origami).

(1.2) Cameras can sense objects before collision. With this feature, we can

create safe interactive robots that are aware of nearby humans and fragile

objects.

(2) Easy to fabricate: Because of its simple structure, its fabrication is easy.

(3) Low cost: The most expensive component is the camera, which is a low cost

webcam. Other components are also inexpensive.

(4) Physically strong: External force is applied to the skin and frame, and does

not reach the camera. Thus it is physically strong.

(5) Easy to repair: Even if the skin is damaged, replacing it is inexpensive.

(6) Using wide-angle lenses (fisheye lenses), we can place the cameras sparsely

distributed under the surface where we want to install tactile sensing.

(7) Sensor parameters are adjustable: We can adjust the dynamic range of force

(hardness and thickness of the skin), size (small cameras miniaturize the sensor

size), spatial resolution (camera resolution, marker allocation, etc.), and tempo-

ral resolution (high speed cameras).

(8) Other types of sensing components can be used, such as range finders and

thermal cameras.

(9) Open source: The fabrication process including CAD files of frames and molds,

software, and tutorials are available on-line4 in order to encourage people to

reproduce FingerVision for their own robots and projects.

Compared to the other vision-based tactile sensors, the features (1.1), (1.2), (8) are

unique to FingerVision because of its transparent skin.

In this paper, we demonstrate the use of FingerVision, especially tactile ma-

nipulation with FingerVision, in order to show its usefulness. The tactile behaviors

presented in this paper are simple to program. Even so, some behaviors are dramat-

ically improved because of the advantages of FingerVision. For example, the grasp

adaptation with FingerVision is very sensitive because of (1.1). FingerVision can

adapt a grasp to a range of objects, including lightweight, deformable, and fragile

ones.

Part of this paper were published in conference papers; an early prototype1,

tactile behaviors5,6, and grasp adaptation7. The purpose of this paper is providing

a comprehensive understanding of tactile behaviors with FingerVision.

The rest of this paper is organized as follows: Section 2 reviews the related
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Fig. 1. Conceptual design of FingerVision (a) and an installation sketch on a robotic gripper (b).
Right two images are prototypes of FingerVision installed on a Baxter electric parallel gripper and
a Robotiq gripper.

work. Section 3 introduces FingerVision. Section 4 describes the tactile behaviors.

Section 5 reports the results of experiments. Section 6 is a discussion section, and

Section 7 concludes the paper.

2. Related Work

2.1. Tactile Sensors in General

There are many different approaches of tactile sensing, such as capacitive sensors,

piezoresistive sensors, magnetic sensors, piezoelectric sensors, optical and prox-

imity sensors, and vision-based sensors. Some of them are commercialized such

as BarrettHand8, PR29, and ReFlex Hand10. More comprehensive reviews are

available11,12. When we design multimodal tactile sensing for robot fingers, we

need to deal with issues of fabrication, wiring, power, size, installation, expense,

and physical robustness. We think the vision-based approach is a good approach,

since: (1) achieving high resolution (superhuman resolution) is not difficult, (2) the

sensor structure can be simple and fabrication is not difficult, (3) wiring is not

problematic by using well established network infrastructure, (4) buying the parts

and fabrication equipment is affordable, (5) the sensing device (camera) is becoming

smaller, cheaper, reliable, and better in resolution and speed, due to the markets for

smart phones and endoscopic surgery, and (6) physically robust since the sensing

device can be isolated from skin deformation.

2.2. Vision-based Tactile Sensors

The idea of using imaging sensors for tactile sensing is decades old. An initial

attempt was measuring the frustration of total internal reflection within a waveguide

on a sensor surface caused by contact13,14,15,16. The research trend has shifted to

measuring displacement of markers placed on the sensor surface with computer

vision, such as using a lattice pattern17, two-colored dots18, a single dot19, and

single-colored dots20,21,22,23,2,24,25. Marker displacements are proportional to the

external force as the displacements are directly caused by the external force. The
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resolution of the contact force field is decided by the camera resolution and the

marker density. The dynamic range of the force measurement can be controlled by

changing the hardness of the elastic material (softer is more sensitive; cf. 26).

Similar to the above work, GelSight was developed by Johnson and Adelson27. It

consists of a transparent elastomer covered with a opaque skin, which is sensitive to

the surface texture and shape of a contacting object. There has been an application

to robotic manipulation tasks3, shear force and slip estimation with markers28, and

a slenderized fingertip (GelSlim)29.

Most of previous vision-based sensors including GelSight occluded the view be-

yond the sensor itself. This simplifies computer vision since the background of the

image is simplified. It makes sensing robust against external lighting conditions and

object appearance. Some studies used functional membranes. For example, GelSight

used a reflective membrane27, which was effective to sense the object texture in high

resolution. An exception was proposed by Patel and Correll30 where a completely

transparent skin was used. However, it used an array of range finders to measure

the distance to an object and the skin deformation rather than using an imaging

optical device.

In contrast, FingerVision uses cameras to view objects of interest and relies

on computer vision to separate objects from the background. Although it could

be a disadvantage, there are good computer vision functions in publicly available

libraries such as OpenCVa. More importantly, making all of the skin transparent

gives FingerVision another modality, proximity vision. The sensitivity of measuring

slip is much improved with this approach as discussed below.

2.3. Slip Detection with Tactile Sensors

Slip detection has been studied for decades. An early approach used a mechani-

cal roller to detect slip31. An approach using acoustic signals caused by slip was

explored32. A popular approach is using the vibration caused by slip33,34,35,36,37,38.

Some vibration approaches used accelerometers34,37. Approaches to create a mech-

anism for making slip-detection easier are considered, such as soft skin with a

texture34, soft skin covered with nibs33, and a flexible link structure36. In 39,40,28,

they analyzed an observed force (and torque) to detect slip. Many studies detect

slip by using a distributed sensor array41,42,43. In 43, a 44x44 pressure distribution is

converted to an image, and slip is detected by image processing. In 44, a multi-sensor

fusion approach was proposed where they combined stereo vision, joint-encoders of

the fingers, and fingertip force and torque sensors. In 45, they developed slip detec-

tion using center-of-pressure tactile sensors. In 46, two BioTac47 sensors are used

and several strategies to detect slip are compared experimentally. BioTac sensors

are also used in 48, where they developed three types of tactile estimation: finger

forces, slip detection, and slip classification.

ahttp://opencv.org/
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Similar to ours, 49,22,28 developed methods to detect slip for vision-based tactile

sensors. In 49,22, slip was estimated from the stick ratio (a ratio of areas of stick and

contact regions). In 22, the stick ratio was estimated from the displacement of dotted

markers. The GelSight work28 developed a method to detect slip by thresholding

the entropy of shear (marker) displacement distribution.

In contrast, FingerVision estimates slip by directly analyzing the video from

fingertip cameras. Unlike other vision-based tactile sensors mentioned above, Fin-

gerVision does not rely on marker displacement. FingerVision can estimate slip even

if there are no markers on its surface. This feature makes FingerVision special: it

can sense slip of very lightweight objects such as origami whose contact force is too

small to measure.

2.4. Tactile Behaviors

Robotic manipulation with tactile sensing is also studied. A popular task is grasping.

Sometimes grasp execution with tactile sensing is referred to as grasp adaptation.

There are heuristic behavior designs of grasp adaptation50,51, and a human-inspired

grasp strategy40 which was based on the study of grasp strategy of humans52. Grasp

adaptation is also called re-grasping53,54. Grasp adaptation is sometimes designed

with a grasp stability estimator that estimates a quality of grasp from tactile sensor

readings55,56,57. Typically machine learning approaches are used to construct such

estimators, which requires training samples. Using slip sensation to adapt grasp

is also a popular approach33,49,45,15,58,48,59,60,61. For example, the slip detection of

an optical tactile sensor was used in grasp adaptation15 where the grasping force

of a robot hand was controlled to avoid slip. An experiment of grasping a paper

cup was conducted, where water was poured into it. It was demonstrated that the

robot adapted the grasp against the increasing weight of water without breaking

the paper cup.

In this paper, we follow a grasp adaptation strategy with slip estimation since

it is simple to implement, and we can emphasize the advantage of slip detection

sensitivity with FingerVision. It is especially remarkable that grasp adaptation with

FingerVision can adapt grasp to a light-weight fragile object (e.g. origami) where

the contact force is too small to measure.

Other manipulation studies with tactile sensors are removing a cap of a bottle15

where slip detection was used, rotating a cylinder with a single-finger robot 62 where

an optical tactile sensor2 was used, in-hand manipulation of a cylinder63, peg-in-

hole with slip detection44, inserting a USB connector into a socket3 where GelSight

was used to estimate the pose of the USB connector in the gripper, and in-hand

manipulations43. In 64, contour-following control was learned with tactile sensors

and reinforcement learning.

Comparing tactile behaviors with other approaches is difficult since we do not

have the same robot (especially the same robotic hand) and the same tactile sensors.

Constructing a common baseline would be difficult. Therefore in this paper, we
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demonstrate tactile behaviors that are enabled with FingerVision.

3. FingerVision

This section introduces the vision-based tactile sensor FingerVision, its fabrication,

and the data processing.

3.1. Overview

FingerVision consists of a transparent elastic material made with silicone, a trans-

parent hard layer made with acrylic, and a camera underneath. Some dots (markers)

are placed on the surface of the elastic material, that are made with plastic beads.

The conceptual diagram is shown in Fig. 1. Unlike other research18,22,2, we do not

place an opaque material on the surface. The whole skin is transparent except for

the markers, and the cameras can see the external scene through the skin. This pa-

per presents a prototype with an RGB camera, but it can be extended with multiple

cameras and other types of cameras such as thermal and depth cameras.

The markers are captured by the cameras and tracked. This gives us a 3-axis

(x,y,z) force measurement at each marker point. By combining multiple marker

measurements, we can estimate torque information. The marker size affects the

accuracy of tracking. In general, a bigger marker is easier to detect. The density of

the markers determines the resolution of the contact force field. There is a trade-off

between the resolution and the surface transparency. The hardness and the thickness

of the elastic layer affect the marker movement caused by contact force (a softer

layer is more easily deformed by a small force), and determine the dynamic range of

the contact force measurement. The hard layer is assumed to be fixed on the gripper

so that external force is applied to the elastic and hard layers only and does not

affect the cameras. The physical robustness of the FingerVision sensor is decided

by the elastic and the hard layers. The camera resolution affects the accuracy of

the marker detection and tracking. The camera frame rate affects the sensing frame

rate. These properties (the marker size and density, the hardness and the thickness

of the elastic and the hard layers, and the camera properties) should reflect the

purpose (task) of each part of the skin. Multiple layers of different materials allow

us to create a “hardening” spring or nonlinear compliance.

3.2. Specification of Prototype

As the elastic material, we use silicone, Silicones Inc. XP-565 that has A-16 Shore

hardness after cure. The effective thickness of the elastic material is 4 mm. The

thickness of the acrylic plate is 2 mm.

For markers, we use black micro plastic beads that are spheres of around 1 mm

diameter. The size varies from 0.5 mm to 1.5 mm. The markers are placed on a 5

mm grid.
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We use a fisheye lens camera ELP Co. USBFHD01M-L180 that has a USB

interface. It can capture at many different resolutions. We use the mode of 320x240

with MJPG compression.

3.3. Fabrication of FingerVision

Fabrication of the FingerVision sensor consists of the following processes: (1) making

base frames, molds, and an acrylic plate, (2) placing markers on the mold, (3) mixing

silicone resin and pouring it into the mold (note: degassing with vacuum is necessary

to remove air bubbles before pouring), (4) inserting the base frame with the acrylic

plate into the resin in the mold, (5) fixing the base frame on the mold, (6) waiting

for the silicone to cure, (7) removing the silicone and the frame from the mold, and

finally (8) attaching the camera. For the stability of the fabrication and installation

on robotic hands, we design the frames and the molds with a 3D printer. Fig. 2 shows

the 3D printed frames, molds, and after casting the silicone (at the beginning of

(6)).

We design a frame to attach the hard layer on the finger of a gripper. The

frame has a place to attach the hard layer made with transparent acrylic, and a

connection structure to the gripper. The latter part depends on the gripper. We

create two versions: one is for the electric parallel gripper of a Baxter robot (a

standard gripper), and the other is for the Robotiq 2-finger adaptive robot gripper-

85 (legacy version). Since we have CAD data for the fingers, we can easily connect

to the frame. The Robotiq gripper has a mount on the fingertip under the original

finger pad. We made a structure to attach the frame to the mount. The frame also

has a mount for a camera. We use a 3D printer (LultzBot Mini, Aleph Objects,

Inc.) for producing the frames.

The soft layer is made by casting silicone. We make a mold for casting using a

3D printer to achieve consistent fabrication. However we noticed that the surfaces

of 3D printed objects are not smooth enough to make optically clear skin even after

smoothing with sandpaper. Thus we use a 3D printed mold except for the surface

part of the soft layer. For the surface part, we use ComposiMold.

In order to increase the durability of the soft layer from peeling, we create

depressions and holes on the sides of the frames so that the silicone locks into them,

and we cover the hard layer on both top and bottom with the silicone (see Fig. 2(c)).

Fig. 1 shows our Baxter robot with the FingerVision sensors installed.

3.4. Computer Vision for Processing FingerVision Data

Since the sensing element of FingerVision is a camera, the raw data from Fin-

gerVision is an RGB video stream. We use computer vision methods to process

the video. There are two types of computer vision for FingerVision video. One is

marker tracking that estimates the marker displacements from the initial positions.

The displacements of markers are used to estimate the force distribution. The other
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Fig. 2. (a) CAD of frames for a Baxter electric parallel gripper and a Robotiq gripper. (b) Mold

for silicone casting. (c) After pouring silicone into the mold.

is proximity vision that consists of nearby object detection and movement detec-

tion. The object detection and tracking provides information about a manipulated

object, such as location, pose, area, and texture. It is also used to distinguish the

movement of a manipulated object and the background.

3.4.1. Marker Tracking

We consider two approaches for marker tracking. One is using the mean shift method

to track marker movement. Initial marker positions are obtained by blob detection.

For each marker, we apply mean shift starting from the previous marker position to

obtain the current marker position. The other approach is applying blob detection

locally for each marker. We consider a small region around the previous marker

position, and apply blob detection to obtain the current marker position.

Both methods are implemented in OpenCV. The mean shift method is avail-

able as the cv::meanShift function, and blob detection is available as the

cv::SimpleBlobDetector class. We thought the mean shift approach would be

better since it is a common tracking method. According to our preliminary test,

marker tracking with mean shift was robust. However it turned out that this ap-

proach does not provide good marker position accuracy since cv::meanShift re-

turns an updated object location as integer values. Since the marker movement

on the image is small (a few pixels), the movement was jumpy. On the other hand,

cv::SimpleBlobDetector provides the detected blob position as floating-point val-

ues. The obtained marker position movement was smooth (see the comparison in

Fig. 3(a)). Thus we chose the blob detection-based approach.

The actual procedure consists of two phases: calibration and tracking. In both

phases, we preprocess the image by rectifying the distortion caused by the fisheye

lens, and thresholding to extract black colors as the current markers are black. We

also apply a dilation and an erosion to remove noise.
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(a) (b)

Fig. 3. (a) Comparison of blob tracking based on cv::meanShift (left of each pair) and
cv::SimpleBlobDetector (right of each pair). (b) An example of marker movements when a normal
force is applied.

Calibration : The sensor is covered with a white sheet to remove the background.

We apply blob detection method to an entire image. Then we apply the tracking

method to several frames (e.g. 10); if some markers are moving due to environmen-

tal noise, they are removed from the marker candidates as they are noisy points.

Typically only a few points are removed. The remaining blobs are considered as

initial markers. Note that during the calibration, we do not move the robot and the

white sheet is fixed on the sensor surface. If we do not remove these points, they

will be observed as noisy movements, which affects the accuracy of force estimate.

Tracking : Starting from the initial marker positions, we track each marker frame

by frame. We consider a small (e.g. 30x30) region of interest (ROI) around the

previous marker position. First we count the non-zero pixels in the ROI and compare

it with the non-zero points of the initial marker. If there is a large difference, we do

not perform marker tracking (i.e. a detection failure). Otherwise we apply the blob

detection method to the ROI. Only one blob is expected; otherwise it is considered

a failure. We compare the previous and current blob positions and sizes, and if their

difference is large, it is considered a failure. Otherwise the blob is considered as the

new marker location.

Post Processing: Force Estimation : From the marker movement, we estimate

an array of forces. The blob detection provides a position and a size of each blob.

The position change is caused by a horizontal (surface) force, while the size change

is caused by a normal force. However, since the size change is subtle compared to

the position change, the normal force estimate based on the size change is noisy and

unreliable. An alternative approach approximates the normal force at each marker

with a norm of marker position change. This approximation is useful especially when

taking an average of all the forces. When a normal force is applied to the center

of the skin surface, the markers around the point move radially (Fig. 3(b)). An

average of the horizontal forces in such a case will be close to zero, while an average

of the approximated normal forces will have a useful value. Let dx, dy denote the

horizontal marker movement from the initial position. The force estimate at each
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marker is given by:

[fx, fy, fz] =
[

cxdx, cy

√

d2
x
+ d2

y
, czdy

]

(1)

where cx, cy, cz denote constant coefficients. Note that fy is the normal force (see

Fig. 1 for the coordinate system). We also define an average force and a torque

estimate as:

f =
1

N

∑

[fx, fy, fz] (2)

τ =
1

N

∑

r× [fx, fy, fz] (3)

where N denotes a number of markers, and r denotes a position of a marker from

the center of the image.

3.4.2. Proximity Vision

Proximity vision processes an image to obtain information about nearby objects,

such as object colors, textures, shape, position and orientation, movement including

slippage, and deformation. This paper focuses on approximate detection of an object

and its movement. Simple approaches to detecting movement are optical flow and

background subtraction. Movement detection involves detecting movement of the

environment and the robot body. For example when moving the robot arm, the

camera in FingerVision will capture background change. Operating the gripper also

causes background change. We need to distinguish the movement of an object from

background change. We developed a detection and tracking method for an object,

as well as movement detection.

For simplicity, we model an object with a histogram of colors. In most grasping

scenarios, a robot gripper approaches an object, or another agent passes an object

to the gripper. In both cases, the object is seen as a moving object in the cameras of

FingerVision. Thus, we design the object detection and tracking as follows. First we

create a background model as a histogram of colors. At the beginning of grasping,

we detect moving blobs in the image, compute a histogram of colors of the moving

pixels, and subtract the background histogram. The remaining histogram is added

to the object model. In the tracking phase, we apply the back projection of the

object histogram to the current frame, and thresholding to detect the object. We

describe more details in what follows.

Movement Detection : We found that optical flow and background subtraction

are good at detecting changes in a sequence of images. We compared three im-

plementations based on functions in OpenCV, applying cvCalcOpticalFlowLK to

raw images, cvCalcOpticalFlowLK to edge images detected by the Sobel filter,

and cv::BackgroundSubtractorMOG2 to raw images. In many cases, the three ap-

proaches provided similar results. In some cases, cv::BackgroundSubtractorMOG2
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Fig. 4. An example of the comparison of three functions.

was slightly better than the others (Fig. 4). We used the background subtraction

approach for movement detection.

Object Model Construction : The object model construction consists of two

phases. One is the construction of a background model, which is performed at

the beginning of the experiments. The other is the construction of an object model,

which is performed during each grasping action. Both background and object models

are histograms of colors. We use the hue and saturation components of the HSV color

space to construct the histograms, where the number of bins of hue and saturation

components are 100 and 10 respectively.

The background model is constructed with several adjacent frames (e.g. 3). We

average the histograms of all frames. Let us denote the background histogram model

as Hbg(h, s) where h and s denote hue and saturation bin respectively.

During construction of an object model, the object is assumed to be moving

in the image as we described above. At each frame, we detect the moving points

with the background subtraction method, and calculate the histogram of colors as

Hmv(h, s). We update the object histogram model by:

H ′

obj(h, s) = min(255, Hobj(h, s)+

fgain max(0, Hmv(h, s)− fbgHbg(h, s))) (4)

where Hobj(h, s) and H ′

obj(h, s) are the current and the updated object histogram

models. At the beginning, Hobj(h, s) is initialized to be zero. The component

max(0, Hmv(h, s)−fbgHbg(h, s)) computes the remaining histogram after subtract-

ing the background histogram from the color histogram of moving points. The

min(255, . . . ) operation is for normalization. fbg and fgain are constant values, for

example 1.5 and 0.5 respectively.

In order to simplify the timing to start and stop object model construction,

we use an object model made with the latest 200 frames. We stop object model

construction when the robot starts closing the gripper.

Object Tracking : In each frame, we track an object by detecting the pix-

els similar to the object model. Concretely, we apply a back projection method

(cv::calcBackProject) with the histogram of the object Hobj(h, s), and threshold
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Fig. 5. Examples of proximity vision. In each case, the detected object is shown as blue. In pushing
a screw driver, a human pushed the object which caused slip. The detected slip is emphasized by
the purple color. We can also see green particles that are pixels detected as moving. They are

considered as background movement since they are outside the detected object region.

the result to remove the uncertain pixels. The remaining pixels are the detected

object. These pixels are used in two ways. One is removing the background change

from the moving points obtained from the background subtraction. For this purpose

we apply an erosion (size 2) and a dilation (size 7) to remove noise and expand the

boundary of the object. The other is computing the position and the angle (orien-

tation) of the object. This is done by computing the moment of the object pixels.

Examples of proximity vision are shown in Fig. 5.

4. Tactile Behaviors with FingerVision

We have created several tactile behaviors with FingerVision (cf. Fig. 6). In the fol-

lowing, 〈Behavior〉 denotes a behavior.

〈Gentle Grasp〉: Grasping an object gently by using force estimation. This is use-

ful when grasping a fragile object.

〈Holding〉: Controlling the gripper to avoid slip. This is especially useful when

grasping a deformable and fragile object. It is also effective for grasping light-weight

fragile objects.

〈Grasp Adaptation〉: Automating a lifting-up motion with the slip avoidance con-

trol (i.e. 〈Holding〉). It enables the robot to pick up a range of objects.

〈Handover〉: Opening the gripper when a force change or slip is detected. This is

useful when passing an object to humans.

〈Automatic Placing〉: Placing an object grasped by the robot.

〈Automatic Cutting〉: Automating a part of cutting motion with tactile sensing.

〈In-hand Manipulation〉: Change the orientation of a grasped object by repeat-
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Fig. 6. Conceptual diagrams of tactile behaviors where the modalities used by the behavior and
the brief processes are illustrated.

edly relaxing and tightening the gripper based on the slip estimate.

〈Tracking Object〉: Centering an object between the robot fingers.

〈Tracking Force〉: Operating the robot by pushing with a small force.

For simplicity, we use position control on our grippers. In the following behaviors,

a small movement of the grippers means a position command to create a minimum

movement.

4.1. 〈Gentle Grasp〉

The behavior is closing the gripper until one of the FingerVision sensors on the

fingers senses a sufficient contact force. FingerVision provides an array of forces

(each marker gives 3-dimensional force estimate [fx, fy, fz]). Rather than using an

average force or torque to detect a small force, detecting a small force on each

marker is better in this scenario. For robustness against marker tracking noise,

we programmed force tracking as follows: We categorize |fy| (norm of the normal

force) into 4 types: noise level, sufficient contact force, medium force, large force,

and give scores 0, 1, 3, 5 respectively. Manually defined thresholds are used in this

categorization. We defined the condition to stop closing the gripper as that the sum

of the scores of the array exceeds a threshold (7 worked well in our experiments).

4.2. 〈Holding〉

The behavior is that the robot slightly closes the gripper when the FingerVision

sensors detect slippage, otherwise no action is performed by the gripper. For slip

detection we use the number of moving points on the object in the image. If the
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number exceeds a threshold, it is recognized as a slip event. This strategy is also

considered as feedback control of slip.

Note that the 〈Holding〉 strategy enables a robot to grasp very light-weight

fragile objects such as origami. The idea is that if there is not enough friction

between the object and the fingers, the object will slip when the robot moves the

hand. Using the 〈Holding〉 strategy until there is no slip, the robot will be able to

move the object without slip. This approach is applicable even when force estimation

cannot sense the contact force from the object. Thus this could be a strategy to

grasp light-weight fragile objects.

4.3. 〈Grasp Adaptation〉

〈Grasp Adaptation〉 is a control to adapt grasp to an unknown object where the

gripper is controlled to avoid slip, i.e. activating the 〈Holding〉 strategy introduced

above. Grasping is considered as a control to prevent slip. With a sensor that can

detect slip, we can create a control strategy to prevent slip by adjusting the grasping

force. As explained in the 〈Holding〉 section, this 〈Grasp Adaptation〉 will work with

a range of objects, from heavy rigid objects to lightweight, deformable, and fragile

objects.

In the implementation, a lifting-up motion is executed with slip feedback control

(〈Holding〉). The robot tries to lift up an object with the slip feedback control for

the gripper. If the grasping force is not enough to hold the object, the slip feedback

control adjusts the grasp. We refer to this controller as the 〈Grasp Adaptation〉

controller. Fig. 7 shows the control scheme of 〈Grasp Adaptation〉. First, the robot

tries to bring up the object (BringTest) with the slip feedback control (slipavd).

BringTest is performed slowly so that the gripper can adapt the grasp to the

object. Then the robot lifts it up to the final height (LiftUp). LiftUp is faster than

BringTest, while the slip feedback control is still active to adjust the grasp.

The above behavior is a one-way procedure normally. The implementation

(Fig. 7) has an error recovery. During the above two motions, the robot starts

a recovery motion when it detects that the object is considered to be dropped

(dropped). The detection of object drop is done by thresholding the ratio of the

object area over its initial value as BringTest starts. If the drop condition is satis-

fied, the robot opens the gripper (GraspInit), moves the gripper to the initial pose

(ToInit), and closes the gripper to the previous value when the recovery motion

started (GraspPrev). Then the robot restarts from BringTest.

In the state machine Fig. 7, there is another block (Emergency stop), which is

activated when FingerVision detects a large force. Such an event is considered to

be an exception since the robot grasps nothing and the gripper width is the initial

value which should be greater than the object size. An example scenario of such

an event is when the robot drops the object and it rolls under the finger. Although

the robot finger pushes the object vertically in that case (i.e. only the fingertip of

FingerVision contacts the object), FingerVision can still measure the force. This
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BringTestbegin LiftUp exit(success)

GraspInit

ToInit

GraspPrev

exit(failure)

Grasp adaptation

Grasp failure detection
and recovery Emergency stop

ctrlz(0.02,slow)
+ slipavd

ctrlz(zfinal,fast)
+ slipavd

ctrlz(0,fast)

ctrlg(gprev) ctrlg(gopen)

dropped

reached reached

large force

reached reached

reached

Fig. 7. Control scheme of the 〈Grasp Adaptation〉. The detection of grasp failure and recovery,

and emergency stop are unified.

is possible because the camera of FingerVision has a fisheye lens and the elastic

material propagates the deformation at the fingertip toward the middle part. In

such an event is detected, the state machine is designed to stop immediately.

4.4. 〈Handover〉

We assume that the gripper already grasps an object, i.e. there are forces applied

to the FingerVision sensors. FingerVision is used as a trigger to open the gripper.

Both force change estimation and slip detection are used as the trigger: if one of

them is detected, the gripper is opened. Combining two modalities increases its

applicability. When grasping an object strongly, force tends to be detected. When

grasping a light weight object such as an origami crane, slip tends to be detected.

For force change detection, we compare the force estimate on each marker with

its initial value. We count the number of markers where a difference between those

two values exceeds a threshold. When the number exceeds a threshold (e.g. 5), it

is considered as the trigger. The slip detection is the same as that used in the

〈Holding〉 behavior.

4.5. 〈Automatic Placing〉

The purpose of this behavior is placing an object grasped by the robot. Tactile

sensing is useful to detect an event when the object touches with the ground. Such

an event could be estimated with external vision with a model of the object, but

there will be uncertainty in estimating the distance between the object and the

ground. The approach to use tactile sensing can handle such uncertainty. During
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the placing motion (the robot moving the gripper downward), the robot stops the

movement and opens the gripper when contact is detected. The implementation of

this event detection can be the same as the 〈Handover〉 strategy.

4.6. 〈Automatic Cutting〉

We implement the 〈Automatic Cutting〉 motion of fruits with FingerVision. In this

paper, we simply use tactile sensing to detect a large force applied to the knife.

This detection is useful in two cases. One is detecting the event when the knife

reaches the cutting board. Since the knife is often occluded from the robot vision,

estimating such an event contains uncertainty. The event detection with tactile

sensing can handle such uncertainty. The second is detecting too large force for the

gripper to hold the knife. This situation happens when cutting hard materials such

as pumpkins.

We create a cutting controller which (a) starts from a state where the knife held

by the gripper is put above the material, (b) moves the knife downward (cutting

vertically), and then (c) slightly pulls the knife (cutting horizontally). The controller

moves the knife to the initial position in order to repeat the motion several times

when it cannot cut off the material at once. Event detection is used to determine the

transition from (b) to (c). It is implemented as follows: (A) if −(fLx − fLx0)(fRx −

fRx0) > 10, or (B) if |τLy| + |τRy| > 4, where fLx and fRx indicate the x-value

of the average force of the left and the right sensors, fLx0 and fRx0 indicate their

initial values (right before cutting), and τLy and τRy indicate the y-value of the

average torque of the left and the right sensors. The condition (A) is defined to

detect a large force. The threshold is decided from a preliminary experiment. The

condition (B) is introduced to avoid rotational slip of the knife. Fig. 8(a) shows the

state machine of the 〈Automatic Cutting〉 motion.

When too large force is applied to the knife, it may deform the grasp by moving

the fingers (cf. Fig. 8(b)(a)) or the knife may slip in the fingers (cf. Fig. 8(b)(b)). We

emphasize that FingerVision can be used to detect these situations. For example,

look at the camera view of Fig. 8(b)(b); we can find that the angle of the knife is

different from its initial grasp position.

4.7. 〈In-hand Manipulation〉

We assume that the gripper already grasps an object. The robot repeats the follow-

ing process until the target angle is achieved. The robot slightly opens the gripper

until if senses a small slip. Since there is a small delay between the gripper motion

and slippage, we insert a short waiting time (0.1 s) after each gripper command.

The method to detect slip is the same as that in the 〈Holding〉 behavior, but the

threshold is halved (i.e. more sensitive). After a short waiting time or when slip is

detected, the robot closes the gripper until slip is not detected.
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(a) State machine of the 〈Automatic Cutting〉 motion.

(b) Difficulties in cutting.

Fig. 8. 〈Automatic Cutting〉.

4.8. 〈Tracking Object〉

The goal of this behavior is centering an object between the robot fingers. We control

the robot arm to achieve this purpose. We use object detection and pose estimation.

The position in the camera image plane is estimated; we control the robot arm to

center the object on the image. For controlling the height of the object from the

camera, we use the area of the object on the image. From two FingerVision sensors

on two fingers, we obtain two estimates of object areas on the images. By controlling

the robot to equalize the areas, the object locates at the center of the fingers.

This strategy is a demonstration of proximity vision of FingerVision; the robot

responds to an object that is not in contact with the tactile sensors. Such a function

is only possible with transparent skin. This control will be useful in centering an

object before grasping it. Another application would be inspecting fruits before

picking them.

4.9. 〈Tracking Force〉

The goal of this behavior is operating the robot by pushing with a small force. We

use the force estimate and control the robot to move in the pushed direction. We

also use object detection as a trigger to activate the control, which increases safety
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since the robot does not move when no object is between the fingers. We compared

two variations: one uses the force estimate of Baxter (estimation from joint torque

sensors), and the other combines the force estimate of Baxter and FingerVision.

In the latter case, the robot was operated with smaller force. This control is a

demonstration of using FingerVision in a physical human-robot interaction (HRI)

scenario.

5. Experiments

We conduct some experiments to demonstrate how the proposed tactile behaviors

work with FingerVision. The robots we use here are the Baxter robot of Rethink

Co. and UR3 of Universal Robots. Some of the scenes are shown in Fig. 9 with

the force estimation and the proximity vision views. The videos of experiments are

available on-line:

https://youtu.be/L-YbxcyRghQ Force estimation, pouring water into a grasped

container, test of proximity vision, 〈Gentle Grasp〉, 〈Handover〉, 〈Holding〉, slip-

based grasping, and 〈In-hand Manipulation〉.

https://youtu.be/uy32tO9e7O4 〈Grasp Adaptation〉 of a flower, an origami

crane, and a hairy rubber toy.

https://youtu.be/0sAkec5bpu4 〈Grasp Adaptation〉 of more than 30 kinds of

objects.

https://youtu.be/TAA4YJqEOqg Tracking a feather with proximity vision (no

touch).

https://youtu.be/FQbNV549BQU 〈Tracking Force〉 behavior (playing Tai Chi

with the robot).

https://youtu.be/V0rwJRv2jdk 〈Automatic Placing〉 (from 0:21), and emer-

gency stop (from 0:43).

https://youtu.be/ifOwQdy9gDg Early test of FingerVision, and 〈Automatic

Cutting〉 (from 1:33).

5.1. Robotic System

5.1.1. Sensor Network

The cameras of FingerVision have a USB 2.0 interface. In order to avoid long USB

cables, we place local computers. The local computers send videos obtained from

the FingerVision cameras to a central computer using Ethernet, and the central

computer processes all the videos. In the experiments, we use Raspberry Pi 3Bs as

the local computers, and transmit data through a Gigabit Ethernet network. We use

MJPG-streamerb installed on each Raspberry Pi to capture videos from cameras,

and transmit them using a motion JPEG format. In our test, the final output of

FingerVision data processing (marker tracking and proximity vision) was at 63 FPS

bWe use a forked version: https://github.com/akihikoy/mjpg-streamer
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Fig. 9. Scenes of experiments. “Force est” are views of force estimation (red lines show estimated
forces), and “Prox vision” are views of proximity vision (blue regions are detected objects, and

purple points are detected movements).

with 320x240 resolution from four cameras simultaneously. In the experiments, we

reduced the FPS to 30 to reduce the computational load.

5.1.2. FingerVision on Baxter

The Baxter robot has two 7 degrees of freedom (DoF) arms. We use its velocity

control mode commanded at 500 Hz. Our Baxter robot has two different grippers.

One is the electric parallel gripper of a Baxter robot (a standard gripper) on the

right hand, and the other is the Robotiq 2-finger adaptive robot gripper-85 (legacy

version) on the left hand. Two FingerVision sensors are attached on the fingers

of each gripper. We use two Raspberry Pi 3B computers each of which has two

FingerVision camera connections. Fig. 10(a) shows the Baxter system.

5.1.3. FingerVision on UR3

The UR3 robot has 6 DoF and is driven by joint position or velocity commands.

The robot accepts the joint velocity commands at 125 Hz. A 3D printed gripper

actuated by a Dynamixel servo is mounted on the wrist of the robot that has 1

DoF. The servo is operated using the position control mode at 60 Hz, while the
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(a) The Baxter system with four FingerVision sensors.

(b) Universal Robots UR3 with FingerVision.

state is observed at 40 Hz. Two FingerVision sensors are attached on the fingers of

the gripper. These devices are integrated with the control box of UR3, a Raspberry

Pi 3B, and a central computer. Fig. 10(b) shows the UR3 system.

5.2. Evaluating Force Estimation

We evaluate the force estimation using a scale. First we let the robot push the scale

vertically to evaluate fy. Second we let the robot hold a stick and push the scale

with it in order to evaluate fz. Similarly we evaluate fx by changing the stick and

pushing direction. In each case, we discretely increase the pushing force from around

1 [N] to 20 [N]. We record the force in static situations. For each measurement, we

wait for a few seconds for recording. Fig. 10 shows the results. The values of the

weight scale are linearly scaled and offset. We noticed that there was hysteresis.

There were two sources of noise: marker tracking and the robot control.
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Fig. 10. Average force trajectories in evaluating fy (left), fz (middle), and fx (right) respectively.
The ∗ mark the scale readings (linearly scaled, and offset). The unit of force is omitted as it is not

calibrated as engineered units.

Fig. 11. Gravity-direction component (z-axis) of the force estimate during the pouring-water ex-

periment. Actual pouring is from 35 to 52 [s]. The unit of force is omitted as it is not calibrated
as engineered units.

5.3. Pouring Water into a Grasped Container

We have the Robotiq gripper of Baxter grasp a container, and then pour water into

the container manually. Fig. 11 shows the gravity-direction component (z-axis) of

the force estimate. Pouring was performed from 35 [s] to 52 [s]. The force gradually

increased. This would be accurate enough to estimate the poured amount of water

during a pouring task.

5.4. Test of Proximity Vision

We explore basic results from proximity vision. We let the Robotiq gripper of Baxter

grasp a screw driver weakly, and move it in the gripper manually. Then we let the
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Fig. 12. Force and torque estimate (top) and proximity vision (bottom) during rotating the screw

driver. In the proximity vision graph, there are plots of the object angle (radian) and area obtained
from the moment of object pixels, and the total number of moving pixels (normalized by the image

size). Object angle obtained by an external camera is also plotted (Mocap-obj-angle). The units
of force and torque are omitted as they are not calibrated as engineered units.

gripper grasp an empty Coke can, and poke the can 4 times. Fig. 12 shows the result

of rotating the screw driver. We can see that the object angle changes from zero to

negative, to positive, and goes back to zero again. The object angle measured by

an external camera is also plotted in the figure. Around the peaks, the object angle

is different from the estimate by proximity vision. This was because around these

angles, a part of the object was out of the camera view. During rotating the screw

driver, there are positive movement values that are capturing the slippage. The

torque estimate sensed the external torque that rotated the screw driver. Fig. 13

shows the result of poking the Coke can. Since the Coke can was light weight, the

human poked very weakly. The force and torque estimates did not capture the poke.

However the proximity vision detected the movement as we can see four peaks in

the graph that correspond with the four pokes.

5.5. 〈Gentle Grasp〉

We test the 〈Gentle Grasp〉 strategy with the Robotiq gripper of Baxter. We have

the robot grasp an empty Coke can, and grasp a paper business card on edge. Both

objects are soft and will be damaged with even small forces. Fig. 14 shows the force

and torque estimate, and the proximity vision output during 〈Gentle Grasp〉. The

actual grasp happened at 34.5 [s]. We can see a small change of force around that

time. We can also see movement detection before and during grasping. This was

caused by the approaching motion before the grasp. Similar results are found in
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Fig. 13. Force and torque estimate (top) and the proximity vision (bottom) during poking a Coke
can. See the caption of Fig. 12 for the plots.

Fig. 14. Force and torque estimate (top) and the proximity vision (bottom) during gently grasping
a Coke can. See the caption of Fig. 12 for the plots.

the card case as shown in Fig. 15. The actual grasping happened at 151 [s]. The

movement detection is less than that of the Coke can case. Since the robot grasped

the card on edge, it appeared only in a small region of the image.
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Fig. 15. Force and torque estimate (top) and the proximity vision (bottom) during gently grasping

a business card. See the caption of Fig. 12 for the plots.

5.6. 〈Holding〉 Strategy

We demonstrate the 〈Holding〉 strategy by grasping a screw driver. We compare two

patterns: (A) the 〈Gentle Grasp〉 strategy, and (B) the 〈Holding〉 strategy. During

grasping with each pattern, a human pushes the driver several times. The results

are shown in Fig. 16. From the graphs of force and torque estimates, we can see that

stronger external force was applied in (B). The orientation of the object is changing

more in (A). Thus the 〈Holding〉 strategy could reduce slip.

We apply the 〈Holding〉 strategy to grasp a marshmallow where a human pulls

the marshmallow. Fig. 17 shows the result. We can see many slip detections (peaks

in Right-movement) from the bottom graph, and the magnitude of grasping force

(|fy|) is increasing accordingly in the top graph.

Next we let the robot move a stuffed toy. Moving with the 〈Gentle Grasp〉 strat-

egy, the robot dropped the toy due to a slip. However by activating the 〈Holding〉

strategy, the robot could hold and move the toy. Fig. 18 shows the force and torque

estimates and the proximity vision output during the motion. We find that there

are several discrete events of slippage, and after each of them, the grasping force

(see fy) was increased. At 545 [s], the robot passed the object to the human. The

area of the object in the image, and the force and torque estimates became zero

after that.

5.7. Grasping A Fragile Object with the 〈Holding〉 Strategy

We verify our concept that by using the 〈Holding〉 strategy the robot can grasp

a very light-weight fragile object. As such an object, we use an origami crane.
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Fig. 16. Results of the 〈Holding〉 strategy. Top two graphs are results of 〈Gentle Grasp〉, and
bottom two graphs are ones of the 〈Holding〉 strategy. In each pair, force and torque estimate
(top) and the proximity vision (bottom) are plotted. See the caption of Fig. 12 for the plots.

A human passes an origami crane to the gripper, and the Baxter robot uses the

〈Holding〉 strategy. After grasping it without slip, the robot swings its arm to see

if the 〈Holding〉 strategy is effective. Fig. 19 shows the result. The robot performed

grasping from 142 [s] to 145 [s]. We can see slip detection around 155 [s] and so on,

but the object was kept inside the gripper. From the force and torque estimates,

we cannot see informative changes. This was due to the small weight of the object

(1.7 g).

5.8. 〈Grasp Adaptation〉

The previous experiment showed our concept works. Next, we conduct a further

test of the 〈Grasp Adaptation〉 controller. We verify that when an adequate grasp
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Fig. 17. Force and torque estimate (top) and the proximity vision (bottom) during holding and

moving a marshmallow. See the caption of Fig. 12 for the plots.

Fig. 18. Force and torque estimate (top) and the proximity vision (bottom) during holding and
moving a stuffed toy. See the caption of Fig. 12 for the plots.

pose for an object is given, the 〈Grasp Adaptation〉 controller can adapt the grasp

to the object robustly regardless of the object and its properties. We let a human

operator decide a good grasp pose for a given object with a joystick controller, and

then run the 〈Grasp Adaptation〉 controller to pick up the object. We do not tune

the parameters of the controller for each object.

We tested with 30 deformable and fragile objects shown in Fig. 20 including
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Fig. 19. Force estimate (top) and the proximity vision (bottom) during grasping a paper bird. See
the caption of Fig. 12 for the plots.

vegetables, fruits, origami objects, and a raw egg. We use the Robotiq gripper of

Baxter. Initially each object is placed on a table.

We conducted 36 trials: Origami box, Origami crane, Badminton ball, Hairy

rubber toy, Cup cake, Chocolate, Strawberry, Tomato-medium-1, Eggplant@1, Egg-

plant@2, Zucchini-yellow, Mushroom-1@1, Mushroom-1@2, Egg(raw), Pepper-red-

1, Oyster mushroom-1, Peach-1, Mushroom-2, Potato-1, Kiwi-1, Tomato-medium-2,

Broccoli@1, Broccoli@2, Oyster mushroom-2, Green pepper-1, Kiwi-2, Pepper-red-

2, Tomato-big, Banana-1@1, Banana-1@2, Banana-1@3, Green pepper-2@1, Green

pepper-2@2, Peach-2, Potato-2, Banana-2. A label with @N denotes an N-th trial

of the same object. Examples of successful grasping are shown in Fig. 20. There

were several failures: (1) Dropped after bringing up: Oyster mushroom-1, Potato-1.

(2) Slippage could not be detected due to a computer vision failure: Eggplant@1

(the skin was black), Broccoli@1 and Green pepper-2@1 (the color was similar to

the fingers). (3) Closing gripper did not stop in Banana-1@1 because detecting the

deformation of object as slip. Since the contact force from the table disappeared

when bringing up the banana, the banana skin was deformed slightly. (4) In Banana-

1@2, dropped during bringing up, and failed to re-grasp since the fingers got stuck

at the edge of the object, and the passive joints of the gripper bent. Note that (2)

was solved by grasping the green part (Eggplant@2), helping the object detection

manually (Broccoli@2), and just trying again (Green pepper-2@2).

The issues of (2) and (3) will be solved by improving the computer vision method

for: (A) a better object detection and (B) distinguishing slippage and deformation.

The issues of (1) and (4) will be solved by improving the behavior. For example,
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Fig. 20. Top: 30 objects used in the experiment. Bottom: Examples of grasp (cup cake, raw egg,
oyster mushroom, strawberry, tomato, hairy rubber toy).

testing the grasp stability by shaking the object after grasping will avoid (1). (4)

can be solved by optimizing the trajectory of fingertip in re-grasping.

5.9. 〈Handover〉

We demonstrate the 〈Handover〉 strategy by applying it to a Coke can and a business

card. Both objects are grasped by the 〈Gentle Grasp〉 strategy, and the card is

grasped on edge. Fig. 21 shows the result. In the Coke can case, the robot started

to open the gripper triggered by the slip detection at 25.1 [s]. In the business card

case, the opening gripper was triggered by the force change detection at 160 [s]. The

reason could be that the Coke can is slippery, while the slip detection does not work

well with the card when it is grasped on edge. We also investigated other object

cases, and found that when the robot grasped an object strongly, the force-trigger

was often used since the slip rarely happened with such grasps.
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Fig. 21. Results of the 〈Handover〉 strategy. Top two graphs show the result of the Coke can case,
and bottom tow graphs show the result of the card case. Each of them have force and torque
estimates (top) and the proximity vision (bottom). See the caption of Fig. 12 for the plots.

5.10. 〈Automatic Placing〉, 〈Tracking Object〉, and 〈Tracking

Force〉

We demonstrate the motions of the 〈Automatic Placing〉 with the UR3. The motion

starts where the robot grasps an origami box. The grasp pose is displaced toward

the fingertip on purpose. In the placing motion, the robot tries to move the gripper

downward until its fingertip is around the table. With this setup, the grasped object

will touch the table before the planned motion ends.

Fig. 22 shows an example of the execution. The left image is the initial pose

where we can see the displaced grasp of the object. At the fourth image, the object

touched the table. Since slip was detected, the robot stopped the placing motion

and opened the gripper. The views of FingerVision at the beginning and at slip
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Fig. 22. An execution scene of placing origami box.

detection are shown in the same figure. We can see the points in slip at the frame

when slip was detected.

5.11. 〈In-hand Manipulation〉

We apply the 〈In-hand Manipulation〉 strategy to rotating a pen. The target angle

is 20 degrees from the current angle. Fig. 23 shows the results of eight runs. In

most cases the achieved angles exceeded the target. This was because the object

movement caused by gravity was fast and the sensing and processing frame rate

was not enough to respond to that, and the gripper response was not fast enough.

5.12. 〈Automatic Cutting〉

We conduct an experiment of the 〈Automatic Cutting〉 with the electric parallel

gripper of Baxter. The target objects are a banana and an apple. Fig. 24 shows a

scene of cutting the apple and the corresponding marker tracking result. Fig. 25 and

Fig. 26 shows the sensor values during cutting a banana and an apple respectively

where the trajectories of the average force (x,z) and torque (y) of the left and

the right FingerVision sensors are shown. Since cutting a banana requires only a

small force, the robot cut it with a single trial, while the robot took four trials in

cutting an apple. In the banana case, the robot stopped moving the knife because

the condition (A) of the 〈Automatic Cutting〉 motion was satisfied when the knife

hit the cutting board. In the apple case, the condition (A) was mainly satisfied by

the pressure from the cut edge of the apple fresh. In these graphs, the condition
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Fig. 23. Result of 〈In-hand Manipulation〉. The object orientations obtained by the proximity
vision are plotted per time. The initial orientation is set to be zero.

Fig. 24. Marker tracking result in cutting an apple by the robot. The left image is a view from an
external camera.

(B) was not satisfied, but it was useful when the initial knife orientation was not

perpendicular.

5.13. 〈Tracking Object〉 and 〈Tracking Force〉

We demonstrate the motions of 〈Tracking Object〉 and 〈Tracking Force〉. Fig. 27

shows the snapshots of 30 seconds of 〈Tracking Object〉 where the object is a pink

feather performed by Baxter. We can see that the feather is detected by the object

detection algorithm in the FingerVision views. The robot tries to center the object

on image by moving its arm.
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Fig. 25. Trajectories of the average force (x,z) and torque (y) of the left and the right FingerVision
sensors during cutting a banana by the robot. There was a single cutting motion around the peak

of left x-force.

Fig. 26. Trajectories of the average force (x,z) and torque (y) of the left and the right FingerVision
sensors during cutting an apple by the robot. The robot performed the cutting motion four times
to cut the apple completely. The peaks of left and right x-force correspond with the cutting motion.
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Fig. 27. Snapshots of 〈Tracking Object〉.

Fig. 28. Snapshots of 〈Tracking Force〉.

Fig. 28 shows the snapshots of 6 seconds of the 〈Tracking Force〉 behavior with

the UR3. The human operator pushed the finger with a small force, and then the

robot moved toward the pushed direction. Although this is a simple demonstration,

it shows the capability of FingerVision in HRI applications.

6. Discussion

6.1. Why are tactile sensors not as popular as vision sensors?

There are popular solutions in robot vision (RGB cameras and OpenCV; depth

cameras and the Point Cloud Library), while there is no de facto standard solu-

tions in tactile sensing for robots. The reasons vary: difficulty to physically install,

low durability, poor compatibility among different tactile sensors, unclear usage,

maintenance complexity, programming complexity, and expense. As a result, accu-

mulating the knowledge of tactile sensing for robots is more difficult than that of

robot vision.
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6.2. Improving software improves FingerVision.

This is an interesting feature of vision-based tactile sensors. Typically we need to

improve hardware to improve a sensor, while in vision-based tactile sensors, we can

improve the sensing capability by improving the computer vision software. Of course

high-level sensing capabilities can be improved by software with the other types of

sensors, but vision-based tactile sensors have potential to increase low-level sensing

capabilities. For example, one important part of computer vision for FingerVision

is object detection and tracking. We found that there were some failures in the

〈Grasp Adaptation〉 experiments. These failures could be solved by improving the

computer vision. It also should be mentioned that we can use the recent success of

deep learning in computer vision with vision-based tactile sensors. Especially with

FingerVision, we can use RGB image processing with FingerVision such as object

recognition, which would be an advantage of FingerVision.

6.3. How does FingerVision improve manipulation?

Through the implementation of tactile behaviors, we found there are some useful

cases of FingerVision in manipulation. Slip detection is useful in many scenarios

to avoid slip, 〈Grasp Adaptation〉, and 〈In-hand Manipulation〉 where the slip is

created on purpose. It is also used as triggers, for example in 〈Handover〉 and plac-

ing behaviors. Force estimation is used as triggers in 〈Handover〉 and 〈Automatic

Cutting〉 behaviors. It is useful to detect an emergency (collision), which was used

in the 〈Grasp Adaptation〉.

6.4. Should we convert the force estimate to an engineering unit

(e.g. Newtons)?

This depends on the application. We are planning to use machine learning methods

to learn dynamical models (e.g. relation between input gripper motion and output

force changes) for example by using neural networks65. In this case, obtaining con-

tact force information in engineering units is not necessary. If the force estimates are

consistent enough, we could learn mappings from grasping-action parameters to a

force distribution, and from a force distribution to grasping-quality measurements.

These models would be useful to reason about grasping actions. However using an

engineering unit will be generalizable to other situations and other robots, so it is

still beneficial to consider. Accurately estimating force will depend on the contact

location and may require finite element modeling of the sensor structure.

6.5. Accuracy, reliability, and hysteresis

The marker movement in a horizontal direction is easier to track. The vertical force

is more difficult to detect as the changes of the marker visual size are comparably

smaller. A way to improve the vertical force sensitivity is increasing the thickness

of the elastic layer, although it would make the skin heavier.
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In the experiments, there were some false detections of the markers. These were

mostly due to the external scene. Increasing the number of markers is helpful for

removing outliers, although it will reduce the transparency accordingly.

We found hysteresis, especially when a strong force was applied. In the cutting

vegetable experiments by the robot, the force estimate changed before and after

cutting a hard material. This would be because the deformation of the soft layer

remained. This was mostly reset after releasing the knife.

Although we demonstrated a basic study of force estimation, we did not iden-

tify the range of detectable force and the accuracy of force estimation in dynamic

situations. Also, we did not evaluate the detection of slip. These are left for future

work.

6.6. Can FingerVision grasp objects in the dark or

black/transparent objects?

Installing structured light sources is helpful in dark scenes, although we would need

to avoid reflections of light at the surface of the silicone skin and the boundary of

the silicone and acrylic layers.

In case an object is black (the same color as the markers), it will become difficult

to detect the markers. However, using multiple colored markers will make the marker

detection more robust against the object colors. Note that proximity vision still

works with black objects.

On the other hand, proximity vision will not work with completely transparent

objects. However marker tracking may detect the reaction force from the objects.

Recent progress of computer vision also helps FingerVision to solve these issues.

6.7. Can we distinguish slip and deformation?

Since both slip and deformation appear as movement of pixels in the image, it is

not straightforward to distinguish them. Our current implementation of slip detec-

tion detects both as slip. From our experience, we found that the patterns of the

movement of pixels are different between slip and deformation. In the case of slip,

the pixels move in the same direction, while in the case of deformation, the pixels

move inward radially.

6.8. Proximity vision vs. functional membranes

The key aspect of FingerVision is the transparent skin, while other vision-based

tactile sensors use opaque skin. FingerVision also has markers to detect force distri-

bution. A drawback of FingerVision would be the robustness to external light and

object view. As discussed above, we think this drawback can be handled.

Some vision-based tactile sensors use functional membranes such as GelSight27.

While GelSight provides high-resolution and sensitive texture and shape detection,

FingerVision provides proximity vision and sensitive slip detection. FingerVision
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can also combine with other sensors such as depth and thermal cameras. Which is

better? It would be difficult to answer now since it depends on the task.

7. Conclusion

We introduced a vision-based tactile sensor FingerVision and explored tactile be-

haviors implemented on a Baxter and a Universal Robots UR3 to show its useful-

ness. FingerVision consists of a transparent elastic material with black dots, and

a camera, that is easy to fabricate, low cost, and physically robust. Unlike other

vision-based tactile sensors, the complete transparency of the FingerVision skin

provides a multimodal sensation. The modalities sensed by FingerVision include

distributions of force and slip, and object information such as distance, location,

pose, size, shape, and texture. The slip detection is very sensitive since it is obtained

by computer vision directly applied to the output of the FingerVision camera. It

provides high-resolution slip detection, which does not depend on the contact force,

i.e. it can sense slip of a lightweight object that generates negligible contact force.

The tactile behaviors explored in this paper include manipulations that emphasize

this feature. For example, we demonstrated that grasp adaptation with FingerVision

could grasp origami, and other deformable and fragile objects such as vegetables,

fruits, and raw eggs.
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